Tag Archives: 6 week check

May 2018 newsletter published

Cyclical vomiting this month as the message from the front line, BESS as a learning point for those monitoring the size of an infant’s head, milia also for the babies and the perennial problem of whether or not montelukast works to control episodic wheeze.  Do leave comments below:

Happy New Year 2018! January newsletter uploaded.

Raised intracranial pressure this month, nappy rash, complex febrile seizures, tingling side effects of recreational nitrous oxide use and Vitamin D – again….

Please do leave comments below.

 

July 2017 PDF

Proteinuria this month, babies’ poo, bedwetting and a bit more on paediatric hypertension.  Please do leave comments below.

July 2016 PDF added

Malaria this month, sexual exploitation, sepsis, prolonged jaundice and DDH.  Do leave comments below:

Potted background, assessment and management of vitamin D deficiency

Vitamin D deficiency in children with thanks to Dr Jini Haldar, paediatric registrar at Whipps Cross University Hospital.

Introduction

Vitamin D is an essential nutrient needed for healthy bones, and to control the amount of calcium in our blood. There is recent evidence that it may prevent many other diseases.  There are many different recommendations for the prevention, detection and treatment of Vitamin D deficiency in the UK.  The one outlined below is what we tend to do at Whipps Cross Hospital.

 Prevention

The Department of Health and the Chief Medical Officers recommend a dose of 7-8.5 micrograms (approx. 300 units) for all children from six months to five years of age. This is the dose that the NHS ‘Healthy Start’ vitamin drops provide. The British Paediatric and Adolescent Bone Group’s recommendation is that exclusively breastfed infants receive Vitamin D supplements from soon after birth. Adverse effects of Vitamin D overdose are rare but care should be taken with multivitamin preparations as Vitamin A toxicity is a concern. Multivitamin preparations often contain a surprisingly low dose of Vitamin D.

Indications for measurement of vitamin D

 1. Symptoms and signs of rickets/osteomalacia

  • Progressive bowing deformity of legs
  • Waddling gait
  • Abnormal knock knee deformity (intermalleolar distance > 5 cm)
  • Swelling of wrists and costochondral junctions (rachitic rosary)
  • Prolonged bone pain (>3 months duration)

2. Symptoms and signs of muscle weakness

  • Cardiomyopathy in an infant
  • Delayed walking
  • Difficulty climbing stairs

3. Abnormal bone profile or x-rays

  • Low plasma calcium or phosphate
  • Raised alkaline phosphatase
  • Osteopenia or changes of rickets on x-ray
  • Pathological fractures

4. Disorders impacting on vitamin D metabolism

  • Chronic renal failure
  • Chronic liver disease
  • Malabsorption syndromes, for example, cystic fibrosis, Crohn’s disease, coeliac disease
  • Older anticonvulsants, for example, phenobarbitone, phenytoin, carbamazepine

5. Children with bone disease in whom correcting vitamin D deficiency prior to specific treatment would be indicated:

 

Symptoms and signs in children of vitamin D deficiency

1. Infants: Seizures, tetany and cardiomyopathy

2. Children: Aches and pains: myopathy causing delayed walking; rickets with bowed legs, knock knees, poor growth and muscle weakness

3. Adolescents: Aches and pains, muscle weakness, bone changes of rickets or osteomalacia

 

Risk factors for reduced vitamin D levels include:

  • Dark/pigmented skin colour e.g. black, Asian populations
  • Routine use of sun protection factor 15 and above as this blocks 99% of vitamin D synthesis
  • Reduced skin exposure e.g. for cultural reasons (clothing)
  • Latitude (In the UK, there is no radiation of appropriate wavelength between October and March)
  • Chronic ill health with prolonged hospital admissions e.g. oncology patients
  • Children and adolescents with disabilities which limit the time they spend outside
  • Institutionalised individuals
  • Photosensitive skin conditions
  • Reduced vitamin D intake
  • Maternal vitamin D deficiency
  • Infants that are exclusively breast fed
  • Dietary habits – low intake of foods containing vitamin D
  • Abnormal vitamin D metabolism, abnormal gut function, malabsorption or short bowel syndrome
  • Chronic liver or renal disease

 

Management depends on the patient’s characteristics:

 A. No risk factors

No investigations, lifestyle advice* and consider prevention of risk factors

 

B. Risk Factors Only

1. Children under the age of 5 years: Lifestyle advice* and vitamin D supplementation.

Purchase OTC or via Healthy Start

Under 1 year: 200 units vitamin D once daily

1 – 4 years: 400 units vitamin D once daily

 

2. Children 5 years and over – offer lifestyle advice*

 

 

C. Risk Factors AND Symptoms, Signs

Lifestyle advice*

Investigations:

  • Renal function, Calcium, Phosphate, Magnesium (infants), alkaline phosphatase,
  • 25-OH Vitamin D levels, Urea and electrolytes, parathyroid hormone

 

Children can be managed in Primary Care as long as:

  • No significant renal impairment
  • Normal calcium (If <2.1 mmol/l in infants, refer as there is a risk of seizures)

If further assessment is required consider referral to specialist. **

Patient’s family is likely to have similar risk of Vitamin D deficiency – consider investigation ant treatment if necessary.

 

 

*Life style advice

 

1. Sunlight

Exposure of face, arms and legs for 5-10 mins (15-25 mins if dark pigmented skin) would provide good source of Vitamin D. In the UK April to September between 11am and 3pm will provide the best source of UVB. Application of sunscreen will reduce the Vitamin D synthesis by >95%. Advise to avoid sunscreen for the first 20-30 minutes of sunlight exposure. Persons wearing traditional black clothing can be advised to have sunlight exposure of face, arms and legs in the privacy of their garden.

2. Diet

Vitamin D can be obtained from dietary sources (salmon, mackerel, tuna, egg yolk), fortified foods (cow, soy or rice milk) and supplements. There are no plant sources that provide a significant amount of Vitamin D naturally.

 

  **Criteria for referral
  • Criteria for management in primary care not met
  • Deficiency established with absence of known risk factors
  • Atypical biochemistry (persistent hypophosphatemia, elevated creatinine)
  • Failure to reduce alkaline phosphatase levels within 3 months
  • Family history (parent, siblings) with severe rickets
  • Infants under one month with calcium <2.1mmmol/l at diagnosis as risk of seizure.  (Check vitamin D level of mothers in this group immediately and treat, particularly if breast feeding.)
  • If compliance issues are anticipated or encountered during treatment.
  • Satisfactory levels of vitamin D not achieved after initial treatment.

 

  Vitamin D levels, effects on health and management of deficiency

level effects

management

< 25 nmol/l (10micrograms/l) Deficient.  Associated with rickets, osteomalacia Treat with high dose vitamin D

Lifestyle advice AND vitamin D (ideally cholecalciferol)

• 0 – 6 months: 3,000 units daily

• 6 months – 12 yrs: 6,000 units daily

• 12 – 18 yrs: 10,000 units daily

vitamin D 25 – 50 nmol/l (10 – 20micrograms/l Insufficient and associated with disease risk Over the counter (OTC) Vitamin D supplementation (and maintenance therapy following treatment for deficiency) should be sufficient.

 

• Lifestyle advice and  vitamin D supplementation

< 6 months: 200 – 400 units daily (200 units may be inadequate for breastfed babies)

Over 6 months – 18 years: 400 – 800 units daily

50 – 75 nmol/l (20 – 30micrograms/l) Adequate Healthy Lifestyle advice
> 75 nmol/l (30 micrograms/l) Optimal Healthy None

 

Course length is 8 – 12 weeks followed by maintenance therapy.

 

 Checking of levels again

As Vitamin D has a relatively long half-life levels will take approximately 6 months to reach a steady state after a loading dose or on maintenance therapy. Check serum calcium levels at 3 months and 6 months, and 25 – OHD repeat at 6 months. Review the need for maintenance treatment.  NB:  the Barts Health management protocol uses lower treatment doses for a minimum of 3 months and then there is no need for repeat blood tests in the majority of cases of children satisfying the criteria for management in primary care.

 Serum 25 OHD after 3 months treatment Action

level action review
>80nmol/ml Recommend OTC prophylaxis and lifestyle advice as required
50 – 80 nmol/mL Continue with current treatment dose reassess in 3 months
< 50 nmol/mL Increase dose or, in case of non-adherence/concern refer to secondary care.  

It is essential to check the child has a sufficient dietary calcium intake and that a maintenance vitamin D dose follows the treatment dose and is continued long term.

Follow-up:

Some recommend a clinical review a month after treatment starts, asking to see all vitamin and drug bottles. A blood test can be repeated then, if it is not clear that sufficient vitamin has been taken.

Current advice for children who have had symptomatic Vitamin D deficiency is that they continue a maintenance prevention dose at least until they stop growing. Dosing regimens vary and clinical evidence is weak in this area. The RCPCH has called for research to be conducted.  The RCPCH advice on vitamin D is at http://www.rcpch.ac.uk/system/files/protected/page/vitdguidancedraftspreads%20FINAL%20for%20website.pdf

JINI HALDAR

 

January 2015, late but useful!

January 2015 newsletter is being published late with apologies.  The newsletter is circulated prior to publication to be checked by my 8 paediatric consultant colleagues and any guest authors.  I neglected to attach the newsletter to my initial email, a fact pointed out to me on the 31st January…..  Now checked and ready to go.

Andrew Lock has put together a really helpful guide to viral exanthems with trustworthy links to proper images, Vicky Agunloye is back this month with an invaluable guide to the healthcare professional’s assessment of a crying baby (and his/her mother).  Tom Waterfield has looked at the usefulness of saline nebs in bronchiolitis, there are some more “do not do” recommendations from NICE and a link to Suffolk’s guideline on managing anaphylaxis and its follow up from primary care.  Do leave comments below:

June newsletter

June’s newsletter has been uploaded.  Migraine presentation in adults and children v. tension headaches, baby slings and a bit on acne.  Do leave comments below.

July 2013 PDF

Neglect and emotional abuse is the safeguarding topic this month.  ED advice on the management of minor head injuries, a report from BPSU in hypocalcaemic fits secondary to vitamin D deficiency, the new UK immunisation poster and a bit on crying babies.  Hope you find it all helpful.  Comments welcome below

February 2013 uploaded!

A timely reminder of an albeit old guideline on otitis media this month, continuation of our minor injuries series and introduction to a new series on sleep disorders.  Also a link to a new Whipps “1st afebrile fit” guideline and a bit of background on hypospadias.

Hypospadias

With thanks to Dr Nikolina Kyprianou for this article and to Mr Devesh Misra, consultant paediatric urologist at the Royal London Hospital, for checking it.

Hypospadias is a congenital abnormality where the male urethral opening is displaced ventrally.  It may be displaced anywhere within the glans, the shaft of the penis, the scrotum, or the perineum.  It results from failure of the urethral folds to close during fetal development and it is often associated with abnormal penile curvature (chordee) due to disrupted development of the penile shaft.  Males with severe uncorrected forms of hypospadias may have difficulties in controlling their urinary stream which may require urination in a sitting position.  They can also have erectile dysfunction and infertility (due to impaired semen delivery).

Severity

The location of the urethral meatus classifies the hypospadias and its severity.

Figure 1. Different types of hypospadias

3 classes of severity:

  • 1st degree: urethral opening within the glans/subcoronal (50% of cases)
  • 2nd degree: urethral opening on the penile shaft (20% of cases)
  • 3rd degree: urethral opening within the scrotum or perineum (30% of cases)

Pathogenesis

Hypospadias results due to disruption of the androgenic stimulation that is required for the normal male external genitalia to develop.  Environmental factors have been found to be associated with hypospadias suggesting a multifactorial aetiology.  These include:

  • Advanced maternal age
  • Pre-existing maternal diabetes mellitus
  • Gestational age before 37 weeks
  • History of paternal hypospadias
  • Exposure to smoking and pesticides
  • IVF

Incidence

Hypospadias is one of the most common congenital abnormalities with an incidence from 0.3 to 0.7% in live male births.  It is more common in the Caucasian population and in those of Jewish and Italian descent.

Diagnosis

The diagnosis is usually made during the newborn examination.  Physical findings include:

  • The appearance of two urethral openings: the first  one will be in the normal position at the end of the glans, which will be  a blind ending urethral pit.  The second is the abnormally located true urethral meatus.
  • Abnormal foreskin due to its incomplete closure around the glans leading to the appearance of a dorsal hooded prepuce.
  • Abnormal penile curvature (chordee).

In 6% of cases the foreskin is normal and the urethral abnormality only becomes evident during/after circumcision when the glans of the penis is visualised.

Evaluation

Isolated hypospadias: this is only rarely associated with upper genitourinary tract abnormalities and therefore there is no need to
routinely perform imaging studies of the tract.

Cryptorchidism and hypospadias: these patients have an increased risk of disorders of sex development. Cryptorchidism is present in 10% of
patients with hypospadias and is higher in patients with proximal hypospadias (eg. scrotal or perineal urethral meatus).  Proximal hypospadias on its own is also associated with disorders of sex development.  These patients should be referred to a specialist so that they can have the following investigations:

  • Pelvic USS to evaluate internal genitalia.
  • Karyotype analysis.
  • Serum electrolytes as a screen for salt-wasting forms of congenital adrenal hyperplasia.

Hypospadias with other organ system anomalies eg. Congenital cardiac disease, imperforate anus, limb malformations, or cleft lip.  These patients require renal and bladder USS because they are at risk of upper tract abnormalities.  They should be referred to a specialist who will also perform genetic testing.

Management

Parents should be advised not to circumcise their baby in order to preserve the foreskin and optimise later surgical choices.  These patients need to be referred to the local paediatric urologist who will determine the severity of the hypospadias and the need and timing for surgical correction.

The goal of surgery is to create a straight penis by repairing any curvature (orthoplasty), to create a urethra with its meatus at the tip of the penis (urethroplasty), to reform the glans into a more natural conical configuration (glansplasty), to achieve cosmetically acceptable penile skin coverage, and to create a normal-appearing scrotum.   Surgery is usually performed within the first year of life because early correction is associated with improved wound
healing, reduced rate of complications and improved emotional and psychological result.  The repair is usually planned as a single-stage procedure, but in infants with severe hypospadias a two-stage repair may be necessary.

Prognosis

With the use of modern instruments, sutures and antibiotics and by performing the procedure at a younger age, the repair of hypospadias has been successful.

For a useful leaflet for parents please follow link and download the PDF document: http://www.patient.co.uk/health/Hypospadias.htm

References:

Baskin LS, Erol A, Li YW, Cunha GR. Anatomical studies of hypospadias. J Urol 1998; 160:1108.

Baskin LS, Ebbers MB. Hypospadias: anatomy, etiology, and technique. J Pediatr Surg 2006; 41:463.

Carlson WH, Kisely SR, MacLellan DL. Maternal and fetal risk factors associated with severity of hypospadias: a comparison of mild and severe cases. J Pediatr Urol 2009; 5:283.

Brouwers MM, Feitz WF, Roelofs LA, et al.  Risk factors for hypospadias. Eur J Pediatr 2007; 166:671.

www.patient.co.uk