Tag Archives: haematology

March 2017

ALL presenting as a persistent limp this month, nitrites on the dipstick, haematocrit, a childline app and a local paediatric asthma study day.  Please do leave comments below.

Decoding the full blood count (haematocrit)

Part 2 of “Decoding the full blood count” with thanks to Dr Alexandra Briscoe, paediatric registrar at Whipps Cross University Hospital, and Professor Irene Roberts, professor of paediatric haematology at Oxford.

 

Haematocrit/packed cell volume

Haematocrit/ packed cell volume- the proportion of blood that is made up of cells (not plasma); it is measured as a percentage or fraction.

Low haematocrit is seen in anaemia, though it will not tell you the direct cause for the anaemia.

Raised haematocrit is seen in polycythaemia, in the newborn infant this is termed Neonatal Polycythaemia.

Defined as a venous haematocrit > 65%, occurring in 0.4-5% of healthy newborns. Symptoms are believed to be due to hyperviscosity. On examination children appear plethoric, and may have multi-systemic symptoms. These include- CNS features of irritability, cerebrovascular accidents and seizures. Apnoea and respiratory distress occur as a result of decreased pulmonary blood flow. In addition infants may demonstrate poor feeding, and may in rare cases develop necrotising enterocolitis (NEC.) Renal effects include renal vein thrombosis, oliguria, proteinuria and haematuria.  Hypoglycaemia and thrombocytopenia (Vlug, 2013) are also seen commonly.

The development of polycythaemia occurs secondary to increased erythropoiesis as a consequence of chronic fetal hypoxia. IUGR and placental insufficiency- due to post-dates pregnancies, pre-eclampsia and maternal smoking, increase the incidence of polycythaemia. Infants of diabetic mothers, those with Beckwith –Weidemann, and congenital thyrotoxicosis are also at increased risk.

There has been much debate as to whether delayed cord clamping increases the incidence of polycythaemia. Current NICE guidelines recommend cord clamping between 1-5 minutes after delivery, provided there is no concern regarding the infant’s heart rate or need for resuscitation. In a Cochrane review of cord clamping practices and neonatal outcomes in 2013 McDonald et al found that delayed cord clamping was associated with increased risk of jaundice requiring phototherapy, however beneficial outcome in terms of iron stores- with a 50% reduction in iron deficiency at 3-6 months. They reported no difference in incidence of polycythaemia in 5 trials measuring this outcome.

Current management of symptomatic polycythaemia is a partial exchange transfusion.

 

Vlug RD, Lopriore E, Janssen M, et al. Thrombocytopenia in neonates with polycythemia: incidence, risk factors and clinical outcome. Expert Rev Hematol. 2015 Feb. 8 (1):123-9. [Medline].

ID: CD004074 McDonald, Susan J, Middleton, Philippa, Dowswell, Therese Morris, Peter S

Effect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes

Cochrane Database of Systematic Reviews 2013

DOI: 10.1002/14651858.CD004074.pub3

US: http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD004074.pub3/abstract

What are normal haematocrit levels?

(taken from http://www.medicinenet.com/hematocrit/page2.htm)

The normal ranges for haematocrit  depend on the age and, after adolescence, the sex of the individual. The normal ranges are:

  • Newborns: 55% to 68%
  • One (1) week of age: 47% to 65%
  • One (1) month of age: 37% to 49%
  • Three (3) months of age: 30% to 36%
  • One (1) year of age: 29% to 41%
  • Ten (10) years of age: 36% to 40%
  • Adult males: 42% to 54%
  • Adult women: 38% to 46%

These values may vary slightly among different laboratories.

February 2017

The burns triage tool this month plus a bit on urinalysis (pH) and the start of our decoding the FBC series.  Also a reminder about the MAP guideline for management of CMPA in primary care, a link to some good courses on this topic and to a document I have put together on milks to use in the UK for CMPA.

Paediatric Haematology: Decoding the full blood count (Hb and RBC)

With thanks to Dr Alexandra Briscoe and Professor Irene Roberts for their collaborative work.

The red cell count and haemoglobin (see February 2017 newsletter for normal ranges)

The red cell count is the actual number of red cells per mL of blood, and the haemoglobin (Hb) is the concentration of the Hb protein itself- the oxygen carrying protein.

A raised red cell count due to increased production of red cells is seen in children with chronic hypoxia, such as congenital heart disease and, in neonates, manifests as neonatal polycythaemia, usually due to chronic in utero hypoxia.

During the last 2 months of pregnancy erythropoiesis occurs at a rate of 3-5 x that of adults, consequentially the healthy newborn has a relative polycythaemia compared to infants and children-  manifest as a raised Hb, red cell count and haematocrit.

The Hb falls over the first 2-3 months of life in response to several factors- with the onset of respiration at birth- oxygenation increases, erythropoieitin production and erythropoiesis is decreased via negative feedback. Neonatal red blood cells have a shorter half-life of 90 days compared to 120 days for red cells in healthy children and adults. In addition over this time period, neonates undergo  rapid growth and weight increase with a subsequent increase in circulatory volume- leading to relative haemodilution. This physiological anaemia requires no intervention in otherwise healthy term infants and will rarely fall below 90g/L.

In contrast, infants born extremely prematurely at <28 weeks of completed gestation, will frequently require red cell transfusion. This is due to anaemia of prematurity. The cause is multifactorial, including low erythropoietin, shortened red cell lifespan, nutritional deficiency and iatrogenic blood letting, however the nadir in Hb occurs earlier (4-8 weeks compared to 8-12 weeks in term babies) and is more severe. Premature red blood cells have a life span of 35-50 days, and infants have a circulating blood volume of 90- 105 mls/kg, which could be as little as 45mls in a 24 week 500g infant. In addition, these infants do not receive maternal iron transfer via the placenta. Preterm infants also have a slow erythropoietin response to hypoxia and anaemia- this is because the site of production of erythropoietin is the liver rather than the kidney as per term infants. There is also evidence of increased metabolism of EPO in the preterm infant. (Strauss, 2010). Despite multiple studies into the use of exogenous erythropoietin for preterm infants, current guidelines recommend red cell transfusion for the management of anaemia of prematurity.

Reference:

Ronald G. Strauss, Anaemia of prematurity: Pathophysiology and treatment, Blood Reviews, Volume 24, Issue 6, November 2010, Pages 221-225, ISSN 0268-960X, http://dx.doi.org/10.1016/j.blre.2010.08.001.
(http://www.sciencedirect.com/science/article/pii/S0268960X10000408)